Wall-normal scalar flux within a buoyant plume in a turbulent boundary layer

Miaoyan Pang^{1*}, Kapil Chauhan¹ and Krishna Talluru²

¹ Centre for Wind, Waves and Water, School of Civil Engineering, The University of Sydney, Darlington NSW 2006, Australia ² School of Engineering and Technology, University of New South Wales Canberra, Campbell ACT 2612, Australia *mailto: miaoyan.pang@sydney.edu.au

1 Introduction

The Reynolds transport equation for the instantaneous concentration field, $\tilde{C} = C + c$ (where *C* is mean and *c* is fluctuation), of a plume in a turbulent boundary layer, is not closed because the scalar fluxes, $\overline{u_i c}$ are not known *a priori*. Here we denote the streamwise direction as *x* and the vertical direction as *z*. For a plume released within a turbulent boundary layer with the mean flow in the *x* direction, the wall-normal flux, \overline{wc} dominates the vertical spread of the plume. Typically, the gradient-diffusion hypothesis is used to model the fluxes, e.g.

$$-\overline{wc} = \kappa_z \cdot \partial C / \partial z. \tag{1}$$

It is well-known that the plume spread is different if the source is placed at different heights of the boundary layer. Hence it is not straightforward to specify distinct κ_i for each source height. The present study undertakes a study of the behaviour of \overline{wc} from experimental data.

The theoretical shape of \overline{wc} of an elevated source can be diagnosed by considering that $\overline{wc} = 0$ at the plume centreline due to symmetry and far away outside the plume as concentration vanishes (Wyngaard, 2013). The location of the plume centreline, z_{cl} , is defined as the height of the maximum root mean square (RMS) concentration, $\sigma_{c,max}$, in this abstract. Packets of concentration (+*c*) moving upwards (+*w*) and negative concentration fluctuations (-*c*) moving downwards (-*w*) result in $\overline{wc} > 0$ above the plume centreline (Wyngaard, 2013). Similarly, $\overline{wc} < 0$ below the plume centreline. Overall the profile has an s-shape.

The data used in this manuscript is an experimental study of buoyant plumes released from a point source in a turbulent boundary layer ($Re_{\tau} \approx 1600$) at two different source heights. The density of a tracer gas mixture is varied to emulate the release of a neutrally, positively and negatively buoyant plume. Further details of the experiments can be found given in Talluru et al. (2017); Pang & Chauhan (2022).

2 Normalisation of wc and non-dimensional eddy diffusivity

Figure 1(*a*) shows the distributions of \overline{wc} for two elevated sources as a function of z/δ . The overall trend is similar to the prediction and that observed by past studies, where $\overline{wc} > 0$ above the plume centreline and $\overline{wc} < 0$ below. The overall magnitude of \overline{wc} , however, decreases with downstream distance as expected. Furthermore, the magnitude of \overline{wc} varies between the upper and lower halves of the plume since the vertical velocity fluctuation profile varies in the wall-normal direction. Since the profile exhibits a near-symmetrical behaviour about the plume centreline, the wall-normal distance relative to the location of the plume centreline, z_{CL} , is normalised using plume half-width, δ_z , as $\xi = (z - z_{cl})/\delta_z$ in figure 1(*b*). At the same time, \overline{wc} is normalised using the corresponding standard deviations, $\sigma_w(z)$ and $\sigma_c(z)$. Upon normalisation, in figure 1(b), the similarity in shape and magnitude can be observed. The overall trend of the predicted reverse s-shape can be observed. It is noted that the *y*-axis intercept of $\overline{wc}/\sigma_w\sigma_c$ is not necessarily zero, e.g. the dashed line in dark blue and the solid line in light blue in figure 2(*b*). This is possibly caused by the displacement zone (Kurbatskii & Yanenko, 1983), which will be investigated in a future study.

In the simplest gradient model as equation 1, the dimensional \overline{wc} is related to the gradient of the *C* profile. Alternatively, \overline{wc} can also be related to the gradient of the σ_c profile, since σ_c can also be described by the Gaussian or the reflected-Gaussian model, as in figure 1(*a*). The normalised profiles of σ_c are plotted in figure 2(*a*) and the derivative of standard Gaussian in figure 2(*b*). The derivative has a similar shape as the normalised \overline{wc} in figure 1(*b*), although the magnitude is different. Hence, a new relation of scalar flux is explored,

$$\frac{\overline{wc}}{\sigma_w \sigma_c} = \kappa_\sigma \frac{\partial(\sigma_c / \sigma_{c, \max})}{\partial \xi},$$
(2)

Copyright is held by the author(s) through the Creative Commons BY-NC 4.0 License

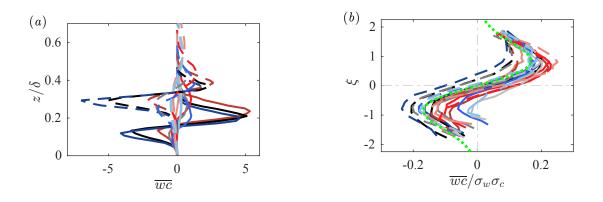


Figure 1. (*a*) Wall-normal fluxes, \overline{wc} , for source released at $z/\delta = 0.16$ and 0.32 at three downstream locations. (*b*) $\overline{wc}/\sigma_w\sigma_c$ v.s. normalised wall-normal distance relative to the location of the plume centreline, ξ .

as plotted in figure 2(c). Note that κ_{σ} is a non-dimensional parameter and not the dimensional eddy-diffusivity. In the current study, $\kappa_{\sigma} \approx -0.11$. Consistency is representative of the two source elevations. The green dotted line in figure 2(c) describes the slope of all profiles well, though some scatter is observed.

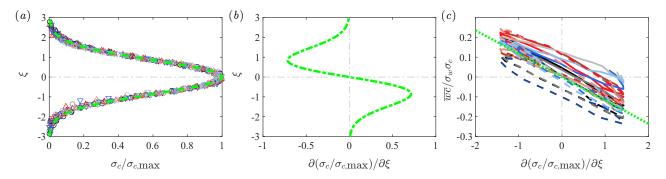


Figure 2. (*a*) Normalised RMS concentration profiles. The green dashed line is the Gaussian model. (*b*) Derivative of the Gaussian model of σ_c . (*c*) Normalised \overline{wc} v.s. derivative of the RMS of concentration. The green dotted line is the best fit of all the points with a slope of 0.11.

3 Conclusions

A novel method is employed to non-dimensionalise \overline{wc} , where \overline{wc} is divided by the local RMS of vertical velocity and RMS of concentration. The resulting normalised \overline{wc} data collapse onto a single curve when plotted against the normalised distance to the plume centreline, in line with theoretical expectations. The normalised \overline{wc} is then used to modify the traditional gradient diffusion model. A new non-dimensional parameter, κ_{σ} , is proposed to linearly relate the normalised \overline{wc} and the gradient of normalised RMS of concentration. The model captures well the shape of normalised \overline{wc} and shows good agreement with data. Unlike the traditional gradient-diffusion model, κ_{σ} remains constant with downstream distance, introducing an advantage. However, including second-order statistics in the Reynolds-averaged transport equation adds complexity.

References

- Kurbatskii, A. F. and Yanenko, N. N. 1983, On the modelling of effects of negative production of temperature-fluctuation intensity in the turbulent mixing layer, *J. Fluid Mech.*, **130**, 453–462.
- Talluru K. M., Hernandez-Silva C., Philip J. and Chauhan K. 2017, Measurements of scalar released from point sources in a turbulent boundary layer, *Meas. Sci. Tech.*, **28**, 1–13.
- Pang M. and Chauhan K. 2022, Measurements of scalar released from point sources in a turbulent boundary layer, *Proc. of 23rd AFMC*, Sydney, Australia.
- Wyngaard J. C. 2013, Turbulence in the Atmosphere, Cambridge University Press.